Abstract
AbstractMethods of machine learning (ML) are gradually complementing and sometimes even replacing methods of classical statistics in science. This raises the question whether ML faces the same methodological problems as classical statistics. This paper sheds light on this question by investigating a long-standing challenge to classical statistics: the reference class problem (RCP). It arises whenever statistical evidence is applied to an individual object, since the individual belongs to several reference classes and evidence might vary across them. Thus, the problem consists in choosing a suitable reference class for the individual. I argue that deep neural networks (DNNs) are able to overcome specific instantiations of the RCP. Whereas the criteria of narrowness, reliability, and homogeneity, that have been proposed to determine a suitable reference class, pose an inextricable tradeoff to classical statistics, DNNs are able to satisfy them in some situations. On the one hand, they can exploit the high dimensionality in big-data settings. I argue that this corresponds to the criteria of narrowness and reliability. On the other hand, ML research indicates that DNNs are generally not susceptible to overfitting. I argue that this property is related to a particular form of homogeneity. Taking both aspects together reveals that there are specific settings in which DNNs can overcome the RCP.
Funder
Baden-Württemberg Stiftung
Publisher
Springer Science and Business Media LLC
Subject
General Social Sciences,Philosophy
Reference61 articles.
1. Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705
2. Arora, S., Du, S. S., Hu, W., Li, Z. & Wang, R. (2019). Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks. In International Conference on Machine Learning.
3. Bacchus, F. (1990). Representing and Reasoning with Probabilistic Knowledge. Cambridge, MA: MIT Press.
4. Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling Modern Machine-Learning Practice and the Classical Bias-Variance Trade-Off. Proceedings of the National Academy of Sciences of the United States of America, 116(32), 15849–15854. https://doi.org/10.1073/pnas.1903070116
5. Belloni, A., Chernozhukov, V., & Hansen, C. (2014). High-Dimensional Methods and Inference on Structural and Treatment Effects. Journal of Economic Perspectives, 28(2), 29–50. https://doi.org/10.1257/jep.28.2.29
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献