The deep neural network approach to the reference class problem

Author:

Buchholz OliverORCID

Abstract

AbstractMethods of machine learning (ML) are gradually complementing and sometimes even replacing methods of classical statistics in science. This raises the question whether ML faces the same methodological problems as classical statistics. This paper sheds light on this question by investigating a long-standing challenge to classical statistics: the reference class problem (RCP). It arises whenever statistical evidence is applied to an individual object, since the individual belongs to several reference classes and evidence might vary across them. Thus, the problem consists in choosing a suitable reference class for the individual. I argue that deep neural networks (DNNs) are able to overcome specific instantiations of the RCP. Whereas the criteria of narrowness, reliability, and homogeneity, that have been proposed to determine a suitable reference class, pose an inextricable tradeoff to classical statistics, DNNs are able to satisfy them in some situations. On the one hand, they can exploit the high dimensionality in big-data settings. I argue that this corresponds to the criteria of narrowness and reliability. On the other hand, ML research indicates that DNNs are generally not susceptible to overfitting. I argue that this property is related to a particular form of homogeneity. Taking both aspects together reveals that there are specific settings in which DNNs can overcome the RCP.

Funder

Baden-Württemberg Stiftung

Publisher

Springer Science and Business Media LLC

Subject

General Social Sciences,Philosophy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3