A defense of Isaacson’s thesis, or how to make sense of the boundaries of finite mathematics

Author:

Dopico PabloORCID

Abstract

AbstractDaniel Isaacson has advanced an epistemic notion of arithmetical truth according to which the latter is the set of truths that we grasp on the basis of our understanding of the structure of natural numbers alone. Isaacson’s thesis is then the claim that Peano Arithmetic (PA) is the theory of finite mathematics, in the sense that it proves all and only arithmetical truths thus understood. In this paper, we raise a challenge for the thesis and show how it can be overcome. We introduce the concept of purity for theories of arithmetic: a theory of arithmetic is pure when it only proves arithmetical truths. Then, we argue that, under Isaacson’s thesis, some PA-provable truths—including transfinite induction claims for infinite ordinals and some consistency statements—are seemingly not arithmetical in Isaacson’s sense, and hence that Isaacson’s thesis might entail the impurity of PA. Nonetheless, we conjecture that the advocate of Isaacson’s thesis can avoid this undesirable consequence: the arithmetical nature, as understood by Isaacson, of all contentious PA-provable statements can be justified. As a case study, we explore how this is done for transfinite induction claims with infinite ordinals below $$\varepsilon _0$$ ε 0 . To this end, we show that the PA-proof of such claims employs exclusively resources from finite mathematics, and that ordinals below $$\varepsilon _0$$ ε 0 are finitary objects despite being infinite.

Funder

Arts and Humanities Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3