Structuralism, indiscernibility, and physical computation

Author:

Doherty F. T.,Dewhurst J.ORCID

Abstract

AbstractStructuralism about mathematical objects and structuralist accounts of physical computation both face indeterminacy objections. For the former, the problem arises for cases such as the complex roots i and $$-i$$ - i , for which a (non-trivial) automorphism can be defined, thus establishing the structural identity of these importantly distinct mathematical objects (see e.g. Keränen in Philos Math 3:308–330, 2001). In the case of the latter, the problem arises for logical duals such as AND and OR, which have invertible structural profiles (see e.g. Shagrir in Mind 110(438):369–400, 2001). This makes their physical implementations indeterminate, in the sense that their structural profiles alone cannot establish whether a given physical component is an AND-gate or an OR-gate. Doherty (PhilPapers, https://philpapers.org/rec/DOHCI-3, 2021) has recently shown both problems to be analogous, and has argued that computational structuralism is threatened with the absurd conclusion that computational digits might be indiscernible, such that, if structural properties are all that we have to go on, the binary digit 0 must be treated as identical to the binary digit 1 (rendering pure structuralism absurd). However, we think that a solution to the indiscernibility problem for mathematical structuralists, drawing on the work of David Hilbert, can be adapted for the analogous problem in the computational case, thereby rescuing the structuralist approach to physical computation.

Funder

Ludwig-Maximilians-Universität München

Publisher

Springer Science and Business Media LLC

Subject

General Social Sciences,Philosophy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Troubles with mathematical contents;Philosophical Psychology;2022-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3