Quantification in the interpretational theory of validity

Author:

Grossi MarcoORCID

Abstract

AbstractAccording to the interpretational theory of logical validity (IR), logical validity is preservation of truth in all interpretations compatible with the intended meaning of logical expressions. IR suffers from a seemingly defeating objection, the so-called cardinality problem: any instance of the statement ‘There are n things’ is true under all interpretations, since it can be written down using only logical expressions that are not to be reinterpreted; yet ‘There are n things’ is not logically true. I argue that the cardinality problem is indeed a serious problem for IR, when understood in terms of ‘asymmetry of information’. I then argue that IR can be rehabilitated by making quantifiers context-sensitive: what we do not reinterpret is the Kaplanian character of a quantifier, rather than its content. ‘There are n things’ is false in a context where fewer than n things are relevant, so it is not logically true in IR. I finally discuss some objections and ramifications of my account: I discuss how to make space for the possibility of an explicitly absolutely general quantifier in my framework, how terms can be logical even though context-sensitive, and how to recapture classical logic within my framework.

Publisher

Springer Science and Business Media LLC

Subject

General Social Sciences,Philosophy

Reference30 articles.

1. Barwise, J., & Cooper, R. (1981). Generalized quantifiers and natural language. In Philosophy, language, and artificial intelligence (pp. 241–301). Springer.

2. Bonnay, D. (2014). Logical constants, or how to use invariance in order to complete the explication of logical consequence. Philosophy Compass, 9(1), 54–65. https://doi.org/10.1111/phc3.12095

3. Cappelen, H., & Lepore, E. (2008). Insensitive Semantics: A defense of semantic minimalism and speech act pluralism. Wiley.

4. Etchemendy, J. (1990). The concept of logical consequence. CSLI Publications.

5. Frege, G. (1884). Die Grundlagen der Arithmetik. Eine logisch-mathematische Untersuchung über den Begriff der Zahl. The Foundations of arithmetic (trans: Beaney, M.) (pp. 84–129).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3