Categorial modal realism

Author:

Brunet Tyler D. P.ORCID

Abstract

AbstractThe current conception of the plurality of worlds is founded on a set theoretic understanding of possibilia. This paper provides an alternative category theoretic conception and argues that it is at least as serviceable for our understanding of possibilia. In addition to or instead of the notion of possibilia conceived as possible objects or possible individuals, this alternative to set theoretic modal realism requires the notion of possible morphisms, conceived as possible changes, processes or transformations. To support this alternative conception of the plurality of worlds, I provide two examples where a category theoretic account can do work traditionally done by the set theoretic account: one on modal logic and another on paradoxes of size. I argue that the categorial account works at least as well as the set theoretic account, and moreover suggest that it has something to add in each case: it makes apparent avenues of inquiry that were obscured, if not invisible, on the set theoretic account. I conclude with a plea for epistemological humility about our acceptance of either a category-like or set-like realist ontology of modality.

Funder

Cambridge Commonwealth, European and International Trust

Leverhulme Trust

Social Sciences and Humanities Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

General Social Sciences,Philosophy

Reference60 articles.

1. Adámek, J., Herrlich, H., & Strecker, G. E. (2004). Abstract and concrete categories. In The joy of cats. A Wiley-Interscience publication Volume 6 of Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts Pure and applied mathematics.

2. Alechina, N., Mendler, M., De Paiva, V., & Ritter, E. (2001). Categorical and Kripke semantics for constructive S4 modal logic. In International workshop on computer science logic (pp. 292–307). Springer.

3. Areces, C., & ten Cate, B. (2007). Hybrid logics. Handbook of Modal Logic, 3, 821–868.

4. Areces, C., Blackburn, P., & Marx, M. (1999). A road-map on complexity for hybrid logics. In International workshop on computer science logic (pp. 307–321). Springer.

5. Artin, M., Grothendieck, A., & Verdier, J. L. (1973). Théorie des topos et cohomologie etale des schémas: Tome 3. Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3