Abstract
Abstract
Background
The Nuclear Factor Y (NF-Y) transcription factor (TF) gene family plays a crucial role in plant development and response to stress. Limited information is available on this gene family in sugarcane.
Objectives
To identify sugarcane NF-Y genes through bioinformatic analysis and phylogenetic association and investigate the expression of these genes in response to abiotic and biotic stress.
Methods
Sugarcane NF-Y genes were identified using comparative genomics from functionally annotated Poaceae and Arabidopsis species. Quantitative PCR and transcriptome analysis assigned preliminary functional roles to these genes in response to water deficit, cold and African sugarcane borer (Eldana saccharina) infestation.
Results
We identify 21 NF-Y genes in sugarcane. Phylogenetic analysis revealed three main branches representing the subunits with potential discrepancies present in the assignment of numerical names of some NF-Y putative orthologs across the different species. Gene expression analysis indicated that three genes, ShNF-YA1, A3 and B3 were upregulated and two genes, NF-YA4 and A7 were downregulated, while three genes were upregulated, ShNF-YB2, B3 and C4, in the plants exposed to water deficit and cold stress, respectively. Functional involvement of NF-Y genes in the biotic stress response were also detected where three genes, ShNF-YA6, A3 and A7 were downregulated in the early resistant (cv. N33) response to Eldana infestation whilst only ShNF-YA6 was downregulated in the susceptible (cv. N11) early response.
Conclusions
Our research findings establish a foundation for investigating the function of ShNF-Ys and offer candidate genes for stress-resistant breeding and improvement in sugarcane.
Publisher
Springer Science and Business Media LLC
Reference63 articles.
1. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Pyshkin AV (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477
2. Baxevanis AD, Arents G, Moudrianakis EN, Landsman D (1995) A variety of DNA-binding and multimeric proteins contain the histone fold motif. Nucleic Acids Res 23:2685–2691
3. Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34(5):525–527. https://doi.org/10.1038/nbt.3519
4. Butterfield M, D’hont A, Berding N (2001) The sugarcane genome: a synthesis of current understanding, and lessons for breeding and biotechnology. Proc South Afr Sugar Technologist Association 75:1–5
5. Cao S, Kumimoto RW, Siriwardana CL, Risinger JR, Holt BF (2011) Identification and characterization of NF-Y transcription factor families in the monocot model plant Brachypodium distachyon. PLoS ONE 6(6):e21805