Abstract
Abstract
Background
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic began in 2019 but it remains as a serious threat today. To reduce and prevent spread of the virus, multiple vaccines have been developed. Despite the efforts in developing vaccines, Omicron strain of the virus has recently been designated as a variant of concern (VOC) by the World Health Organization (WHO).
Objective
To develop a vaccine candidate against Omicron strain (B.1.1.529, BA.1) of the SARS-CoV-19.
Methods
We applied reverse vaccinology methods for BA.1 and BA.2 as the vaccine target and a control, respectively. First, we predicted MHC I, MHC II and B cell epitopes based on their viral genome sequences. Second, after estimation of antigenicity, allergenicity and toxicity, a vaccine construct was assembled and tested for physicochemical properties and solubility. Third, AlphaFold2, RaptorX and RoseTTAfold servers were used to predict secondary structures and 3D structures of the vaccine construct. Fourth, molecular docking analysis was performed to test binding of our construct with angiotensin converting enzyme 2 (ACE2). Lastly, we compared mutation profiles on the epitopes between BA.1, BA.2, and wild type to estimate the efficacy of the vaccine.
Results
We collected a total of 10 MHC I, 9 MHC II and 5 B cell epitopes for the final vaccine construct for Omicron strain. All epitopes were predicted to be antigenic, non-allergenic and non-toxic. The construct was estimated to have proper stability and solubility. The best modelled tertiary structures were selected for molecular docking analysis with ACE2 receptor.
Conclusions
These results suggest the potential efficacy of our newly developed vaccine construct as a novel vaccine candidate against Omicron strain of the coronavirus.
Funder
Korea Institute of Marine Science and Technology Promotion
eGnome
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Molecular Biology,Biochemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献