Categoricity by convention

Author:

Murzi JulienORCID,Topey BrettORCID

Abstract

AbstractOn a widespread naturalist view, the meanings of mathematical terms are determined, and can only be determined, by the way we use mathematical language—in particular, by the basic mathematical principles we’re disposed to accept. But it’s mysterious how this can be so, since, as is well known, minimally strong first-order theories are non-categorical and so are compatible with countless non-isomorphic interpretations. As for second-order theories: though they typically enjoy categoricity results—for instance, Dedekind’s categoricity theorem for second-order and Zermelo’s quasi-categoricity theorem for second-order —these results require full second-order logic. So appealing to these results seems only to push the problem back, since the principles of second-order logic are themselves non-categorical: those principles are compatible with restricted interpretations of the second-order quantifiers on which Dedekind’s and Zermelo’s results are no longer available. In this paper, we provide a naturalist-friendly, non-revisionary solution to an analogous but seemingly more basic problem—Carnap’s Categoricity Problem for propositional and first-order logic—and show that our solution generalizes, giving us full second-order logic and thereby securing the categoricity or quasi-categoricity of second-order mathematical theories. Briefly, the first-order quantifiers have their intended interpretation, we claim, because we’re disposed to follow the quantifier rules in an open-ended way. As we show, given this open-endedness, the interpretation of the quantifiers must be permutation-invariant and so, by a theorem recently proved by Bonnay and Westerståhl, must be the standard interpretation. Analogously for the second-order case: we prove, by generalizing Bonnay and Westerståhl’s theorem, that the permutation invariance of the interpretation of the second-order quantifiers, guaranteed once again by the open-endedness of our inferential dispositions, suffices to yield full second-order logic.

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Philosophy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3