1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). http://tensorflow.org/. Software available from tensorflow.org
2. Aidman, E., Ivancevic, V., & Jennings, A. (2008). A coupled reaction-diffusion field model for perception-action cycle with applications to robot navigation. International Journal of Intelligent Defence Support Systems, 1(2), 93–115.
3. Amstutz, S., & Andrä, H. (2006). A new algorithm for topology optimization using a level-set method. Journal of Computational Physics, 216(2), 573–588.
4. Bellman, R., & Kalaba, R. (1964). Selected papers on mathematical trends in control theory. Dover Publications.
5. Bieker, K., Peitz, S., Brunton, S. L., Kutz, J. N., & Dellnitz, M. (2019). Deep model predictive control with online learning for complex physical systems. arXiv preprint arXiv:1905.10094.