On robot grasp learning using equivariant models

Author:

Zhu Xupeng,Wang Dian,Su Guanang,Biza Ondrej,Walters Robin,Platt Robert

Abstract

AbstractReal-world grasp detection is challenging due to the stochasticity in grasp dynamics and the noise in hardware. Ideally, the system would adapt to the real world by training directly on physical systems. However, this is generally difficult due to the large amount of training data required by most grasp learning models. In this paper, we note that the planar grasp function is $$\textrm{SE}(2)$$ SE ( 2 ) -equivariant and demonstrate that this structure can be used to constrain the neural network used during learning. This creates an inductive bias that can significantly improve the sample efficiency of grasp learning and enable end-to-end training from scratch on a physical robot with as few as 600 grasp attempts. We call this method Symmetric Grasp learning (SymGrasp) and show that it can learn to grasp “from scratch” in less that 1.5 h of physical robot time. This paper represents an expanded and revised version of the conference paper Zhu et al. (2022).

Funder

Northeastern University USA

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Reference54 articles.

1. Berscheid, L., Friedrich, C., & Kröger, T. (2021). Robot learning of 6 dof grasping using model-based adaptive primitives. arXiv preprint arXiv:2103.12810

2. Breyer, M., Chung, J. J., Ott, L., Siegwart, R., & Nieto, J. (2021). Volumetric grasping network: Real-time 6 dof grasp detection in clutter. arXiv preprint arXiv:2101.01132

3. Calli, B., Singh, A., Bruce, J., Walsman, A., Konolige, K., Srinivasa, S., Abbeel, P., & Dollar, A. M. (2017). Yale-cmu-berkeley dataset for robotic manipulation research. The International Journal of Robotics Research, 36(3), 261–268. https://doi.org/10.1177/0278364917700714

4. Cohen, T., Geiger, M., & Weiler, M. (2018). A general theory of equivariant cnns on homogeneous spaces. arXiv preprint arXiv:1811.02017

5. Cohen, T., & Welling, M. (2016a). Group equivariant convolutional networks. In International conference on machine learning (pp. 2990–2999). PMLR.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3