AGRI-SLAM: a real-time stereo visual SLAM for agricultural environment

Author:

Islam Rafiqul,Habibullah Habibullah,Hossain Tagor

Abstract

AbstractIn this research, we proposed a stereo visual simultaneous localisation and mapping (SLAM) system that efficiently works in agricultural scenarios without compromising the performance and accuracy in contrast to the other state-of-the-art methods. The proposed system is equipped with an image enhancement technique for the ORB point and LSD line features recovery, which enables it to work in broader scenarios and gives extensive spatial information from the low-light and hazy agricultural environment. Firstly, the method has been tested on the standard dataset, i.e., KITTI and EuRoC, to validate the localisation accuracy by comparing it with the other state-of-the-art methods, namely VINS-SLAM, PL-SLAM, and ORB-SLAM2. The experimental results evidence that the proposed method obtains superior localisation and mapping accuracy than the other visual SLAM methods. Secondly, the proposed method is tested on the ROSARIO dataset, our low-light agricultural dataset, and O-HAZE dataset to validate the performance in agricultural environments. In such cases, while other methods fail to operate in such complex agricultural environments, our method successfully operates with high localisation and mapping accuracy.

Funder

University of South Australia

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3