1. Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U. R., Makarenkov, V., & Nahavandi, S. (2021). A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Information Fusion, 76, 243–297.
2. Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., Lenc, K., Mensch, A., Millican, K., Reynolds, M., et al. (2022). Flamingo: A visual language model for few-shot learning. In Advances in neural information processing systems.
3. Amini, A., Schwarting, W., Soleimany, A., & Rus, D. (2020). Deep evidential regression. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Advances in neural information processing systems, (vol. 33, pp. 14927–14937). Curran Associates, Inc.
4. Antonante, P., Spivak, D. I., & Carlone, L. (2021). Monitoring and diagnosability of perception systems. In 2021 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 168–175).
5. Arjovsky, M., Bottou, L., Gulrajani, I., & Lopez-Paz, D. Invariant risk minimization. arXiv:1907.02893.