Abstract
AbstractIn this paper, we present a method for solving the localisation of a ground lidar using overhead imagery only. Public overhead imagery such as Google satellite images are readily available resources. They can be used as the map proxy for robot localisation, relaxing the requirement for a prior traversal for mapping as in traditional approaches. While prior approaches have focused on the metric localisation between range sensors and overhead imagery, our method is the first to learn both place recognition and metric localisation of a ground lidar using overhead imagery, and also outperforms prior methods on metric localisation with large initial pose offsets. To bridge the drastic domain gap between lidar data and overhead imagery, our method learns to transform an overhead image into a collection of 2D points, emulating the resulting point-cloud scanned by a lidar sensor situated near the centre of the overhead image. After both modalities are expressed as point sets, point-based machine learning methods for localisation are applied.
Funder
Oxford Robotics Institute
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Geo-Localization Based on Dynamically Weighted Factor-Graph;IEEE Robotics and Automation Letters;2024-06
2. Doppler-Aware Odometry from FMCW Scanning Radar;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24