Towards neuromorphic FPGA-based infrastructures for a robotic arm

Author:

Canas-Moreno SalvadorORCID,Piñero-Fuentes Enrique,Rios-Navarro Antonio,Cascado-Caballero Daniel,Perez-Peña Fernando,Linares-Barranco Alejandro

Abstract

AbstractMuscles are stretched with bursts of spikes that come from motor neurons connected to the cerebellum through the spinal cord. Then, alpha motor neurons directly innervate the muscles to complete the motor command coming from upper biological structures. Nevertheless, classical robotic systems usually require complex computational capabilities and relative high-power consumption to process their control algorithm, which requires information from the robot’s proprioceptive sensors. The way in which the information is encoded and transmitted is an important difference between biological systems and robotic machines. Neuromorphic engineering mimics these behaviors found in biology into engineering solutions to produce more efficient systems and for a better understanding of neural systems. This paper presents the application of a Spike-based Proportional-Integral-Derivative controller to a 6-DoF Scorbot ER-VII robotic arm, feeding the motors with Pulse-Frequency-Modulation instead of Pulse-Width-Modulation, mimicking the way in which motor neurons act over muscles. The presented frameworks allow the robot to be commanded and monitored locally or remotely from both a Python software running on a computer or from a spike-based neuromorphic hardware. Multi-FPGA and single-PSoC solutions are compared. These frameworks are intended for experimental use of the neuromorphic community as a testbed platform and for dataset recording for machine learning purposes.

Funder

european regional development fund

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neuromorphic Technology Insights in Spain;2024 IEEE 24th International Conference on Nanotechnology (NANO);2024-07-08

2. Integrating a hippocampus memory model into a neuromorphic robotic-arm for trajectory navigation;2024 IEEE International Symposium on Circuits and Systems (ISCAS);2024-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3