Abstract
AbstractThis paper proposes to enrich robot motion data with trajectory curvature information. To do so, we use an approximate implementation of a topological feature named writhe, which measures the curling of a closed curve around itself, and its analog feature for two closed curves, namely the linking number. Despite these features have been established for closed curves, their definition allows for a discrete calculation that is well-defined for non-closed curves and can thus provide information about how much a robot trajectory is curling around a line in space. Such lines can be predefined by a user, observed by vision or, in our case, inferred as virtual lines in space around which the robot motion is curling. We use these topological features to augment the data of a trajectory encapsulated as a Movement Primitive (MP). We propose a method to determine how many virtual segments best characterize a trajectory and then find such segments. This results in a generative model that permits modulating curvature to generate new samples, while still staying within the dataset distribution and being able to adapt to contextual variables.
Funder
H2020 European Research Council
Publisher
Springer Science and Business Media LLC