1. Akcin, O., Li, P.-h., Agarwal, S., & Chinchali, Sandeep, P. (2022). Decentralized data collection for robotic fleet learning: A game-theoretic approach. In 6th Annual conference on robot learning.
2. Cheng, Y., Wang, D., Zhou, P., & Zhang, T. (2017). A survey of model compression and acceleration for deep neural networks. arXiv preprint arXiv:1710.09282.
3. Chinchali, S., Cidon, E., Pergament, E., Chu, T., Katti, S. (2018). Neural networks meet physical networks: Distributed inference between edge devices and the cloud. In Proceedings of the 17th ACM workshop on hot topics in networks, HotNets ’18 (pp. 50–56).
4. Chinchali, S., Sharma, A., Harrison, J., Elhafsi, A., Kang, D., Pergament, E., Cidon, E., Katti, S., & Pavone, M. (2019). Network offloading policies for cloud robotics: A learning-based approach. arXiv preprint arXiv:1902.05703.
5. Crawshaw, M. (2020). Multi-task learning with deep neural networks: A survey. arXiv preprint arXiv:2009.09796.