Nanocomposite of copper oxide nanoparticles and multi-walled carbon nanotubes as a solid contact of a copper-sensitive ion-selective electrode: intermediate layer or membrane component–comparative studies

Author:

Wardak CecyliaORCID,Pietrzak Karolina,Morawska Klaudia

Abstract

AbstractIn this paper, ion-selective electrodes sensitive to copper(II) ions are presented, in which new composite, synthesized from copper(II) oxide nanoparticles (CuONPs) and multi-walled carbon nanotubes (MWCNTs), was used as a solid contact. For comparison, electrodes obtained using separate components of the nanocomposite, i.e., CuONPs and MWCNTs, as well as unmodified electrodes, were also studied. The tested nanomaterials have been applied in two ways: as an intermediate layer placed between the ion-sensitive membrane and the internal electrode, and as an additional component of the ion-selective membrane mixture. To investigate the influence of the electrode’s structure modification, the selected analytical parameters obtained by potentiometric measurements (slope, linearity range, detection limit, potential stability, and reversibility) and electrochemical impedance spectroscopy measurements (membrane resistance and charge transfer resistance as well as double layer capacitance) were determined and compared. It was found that the use of all nanomaterials improves the properties of the electrodes, with the effect being the strongest for electrodes modified with the CuO-MWCNTs nanocomposite. The nanocomposite-based electrodes, both those with an intermediate layer and those with a nanocomposite-modified membrane, showed a Nernstian slope of the characteristic, a wider working range and a lower detection limit compared to unmodified electrodes. Moreover, application of all nanomaterials, especially nanocomposite resulted in improvement of both, stability and reversibility of the sensor potential. Modification of the electrodes did not make them sensitive to changing external measurement conditions (lighting, presence of gasses, redox potential). The electrode with the best parameters (based on nanocomposite) was successfully used to determine the Cu2+ ions content in tap water and mineral water, obtaining satisfactory results.

Funder

Ministerstwo Edukacji i Nauki

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Cell Biology,Physical and Theoretical Chemistry,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3