In vitro evaluation of nanoparticle drug-coated balloons: a pectin-RGDS-OC8H17-paclitaxel solution

Author:

Wang PengORCID,Gui Lin,Wang Yuji,Wang ShengORCID

Abstract

AbstractDrug-coated balloons have proved to be an effective technology in percutaneous transluminal angioplasty in treating peripheral artery disease. Paclitaxel-based coating is mainly used. Solutions to such problems as drug loss and inefficient drug release during operations, however, have not been found yet. This study aims to explore the activity of a newly designed paclitaxel-coated balloon in vitro using pectin as the excipient (pectin-paclitaxel) compared with the commercially available shellac excipient balloon, and to characterize the novel nanoparticle paclitaxel-coated balloon with peptide (Arg-Gly-Asp-Ser, RGDS) derivative RGDS-OC8H17 (pectin-RGDS-OC8H17-paclitaxel). Two coating solutions, pectin-paclitaxel and pectin-RGDS-OC8H17-paclitaxel, were successively designed and prepared. The morphology of both coating solutions was first characterized compared with the control group, the commercially available paclitaxel-coated balloon. Then the in vitro experiments were conducted to determine the drug-releasing profiles of both pectin-paclitaxel and pectin-RGDS-OC8H17-paclitaxel coatings. The pectin-RGDS-OC8H17-paclitaxel-coated balloon was smoother and more homogeneous compared with the commercially available paclitaxel-coated balloon and the pectin-paclitaxel-coated balloon. This difference was more obvious when paclitaxel was at low concentration. During the in vitro trial, the drug-releasing curve of the pectin-RGDS-OC8H17-paclitaxel model showed an adjustable paclitaxel-releasing: more than 90% of the paclitaxel released in 2 h at 300 rpm and more than 99% released in 10 min at 1200 rpm. Compared to the performance of the current commercially available shellac excipient products and the pectin-paclitaxel coating, pectin-RGDS-OC8H17-paclitaxel coating provided higher drug-releasing speed. However, the clinical outcomes of this finding need to be further demonstrated. Paclitaxel-coated balloons as an effective therapeutic strategy currently in treating peripheral arterial disease need to be further improved in terms of its efficiency in anti-proliferative drug delivery and release. The pectin-RGDS-OC8H17-paclitaxel coating solution developed in this study exhibited excellent drug-releasing properties. Further experiments are still needed to demonstrate the performance of this novel drug-coated balloon in vivo and its clinical importance.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Cell Biology,Physical and Theoretical Chemistry,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3