Determination of nanoparticles concentration in solution based on Pickering emulsion destabilization analyses

Author:

Błaszczyk Mariola M.ORCID,Przybysz Łukasz

Abstract

AbstractThe dynamic development of nanotechnology research has contributed to the fact that various types of nanoparticles are increasingly used on a large scale both for medical and biological purposes, but above all in many industrial fields. Such a wide application of nanoparticles is often connected with the need to estimate their characteristic parameters, such as size, size distribution or concentration. Existing instruments are usually quite expensive and not always available. Therefore, other cheaper and simpler methods based on analytical techniques are sought. In this paper, we have proposed a method to estimate the concentration of nanoparticles in solutions based on destabilization analyses of Pickering emulsions produced with their use. The fact of mutual relationship between emulsion concentration, nanoparticle concentration and emulsion stability was used here. The study was carried out using silica nanoparticles. It was presented how to apply the method and what are its limitations. Moreover, an example of its application for the determination of nanoparticle concentration in an unknown sample, obtained after analysis of the permeability of membranes in diffusion chambers, has been presented. The method can become a useful alternative for the determination of nanoparticle concentration in solution in places where no specialized equipment is available.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Cell Biology,Physical and Theoretical Chemistry,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanotools for nanoanalysis;Analytical Nanochemistry;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3