Abstract
AbstractIn this work, we present a structural investigation of sub-monolayer films of germanium on Ag(1 1 0) by means of photoelectron spectroscopy (XPS) and diffraction (XPD), as well as low-energy electron diffraction (LEED). Since the rising progress in the synthesis of various kinds of nanoribbons, also germanium nanoribbons (Ge-NR) have been synthesized on Ag(1 1 0), recently. Here, we focus on their structural evolution and found the formation of two different phases of germanium at coverages of $${0.5}\, \hbox {ML}$$
0.5
ML
and $${0.7}\,\hbox {ML}$$
0.7
ML
, differing fundamentally from predicted nanoribbon structures. By means of LEED measurements, we obtained evidence for germanium superstructures which are not aligned along the $$[{\overline{1}}\;1\;0]$$
[
1
¯
1
0
]
-direction, as expected for nanoribbon growth. Using synchrotron-based high-resolution XPS and XPD experiments of the Ge 3d and Ag 3d core-levels, we resolved the local chemical and atomic order of the germanium films. Thus, the strong internal bonding of the buckled germanium film and a weak Van-der-Waals interaction between silver and germanium were discovered. Moreover, XPD-simulations delivered a detailed model of the structural arrangement of the preliminary nanoribbon phase, which also provided an approach to identify the origin of the two chemically shifted components in the Ge 3d signal by applying a component-wise decomposition of the XPD data.
Funder
Land Nordrhein-Westfalen
Technische Universität Dortmund
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Cell Biology,Physical and Theoretical Chemistry,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献