Author:
Abbasi-Kesbi Fatemeh,Rashidi Ali Mohammad,Astinchap Bandar
Abstract
Abstract
Today, the exploration about synthesis of nanoparticles is much of interest to materials scientists. In this work, copper nanoparticles have been successfully synthesized by immersion deposit method in the absence of any stabilizing and reducing agents. Copper (II) sulfate pentahydrate as precursor salt and distilled water and Ethylene glycol as solvents were used. The copper nanoparticles were deposited on plates of low carbon steel. The effects of copper sulfate concentrations and solvent type were investigated. X-ray diffraction, scanning electron microscopy and UV–Visible spectroscopy were taken to investigate the crystallite size, crystal structure, and morphology and size distribution and the growth process of the nanoparticles of obtained Cu particles. The results indicated that the immersion deposit method is a particularly suitable method for synthesis of semispherical copper nanoparticles with the crystallites size in the range of ~22 to 37 nm. By increasing the molar concentration of copper sulfate in distilled water solvent from 0.04 to 0.2 M, the average particles size is increased from 57 to 81 nm. The better size distribution of Cu nanoparticles was achieved using a lower concentration of copper sulfate. By increasing the molar concentration of copper sulfate in water solvent from 0.04 to 0.2, the location of the SPR peak has shifted from 600 to 630 nm. The finer Cu nanoparticles were formed using ethylene glycol instead water as a solvent. Also, the agglomeration and overlapping of nanoparticles in ethylene glycol were less than that of water solvent.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Cell Biology,Physical and Theoretical Chemistry,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics,Biotechnology
Reference44 articles.
1. Argueta-Figueroa L, Morales-Luckie RA, Scougall-Vilchis RJS, Olea-Mejía OF (2014) Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu–Ni nanoparticles for potential use in dental materials. Prog Nat Sci 24(4):321–328
2. Barker BD (1981) Electroless deposition of metals. Surf Technol 12(1):77–88
3. Betancourt-Galindo R, Reyes-Rodriguez PY, Puente-Urbina BA, Avila-Orta CA, Rodríguez-Fernández OS, Cadenas-Pliego G, Lira-Saldivar RH, García-Cerda LA (2014) Synthesis of copper nanoparticles by thermal decomposition and their antimicrobial properties. J Nanomater 1(2014):10
4. Camacho-Flores BA, Martínez-Álvarez O, Arenas-Arrocena MC, Garcia-Contreras R, Argueta-Figueroa L, de la Fuente-Hernández J, Acosta-Torres LS (2015) Copper: synthesis techniques in nanoscale and powerful application as an antimicrobial agent. J Nanomater 16(1):423
5. Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25(13):135101
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献