Abstract
AbstractElectrospun nanofibers have been extensively investigated in recent years for the generation of various advanced sensing technique like high efficiency biosensors, chemosensors, colorimetric sensing strip, and nanofibrillar-based biosorbent for waste water management, remediation and environmental monitoring. The present review article highlights various different types of conventional sensors, their limitations and the further advancement towards development of highly sensitive sensor with faster response time using functionalized nanofibrous matrix. It also explains the various approaches for the generation of nanofibrous matrix through melt blowing, force spinning, template melt extrusion and electrospinning methods and their further modification with suitable probe for the detection and elimination of various water contaminants. This review discussed various nanofibrous matrices that have been modified for the sensing and remediation of heavy metals such as mercury (Hg), lead (Pb), copper (Cu), organic pollutants such as dye, petroleum, phenolic compounds, and microorganisms such as Escherichia coli (E. coli), BVDV (bovine viral diarrhoea virus), Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans). Finally, the various challenges and future perspectives associated with the usage of nanofibrous matrix-based sensors for detection and remediation of water pollutant are discussed.
Funder
Manipal Academy of Higher Education, Manipal
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Cell Biology,Physical and Theoretical Chemistry,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献