Recent advancement in development and modification of nanofibrous matrix for the application in sensing and remediation of water pollutants

Author:

Khurana Dolphee,Sadashiva Swathi,Dey Bipasa,Guruprasad K. P.,Bhat Shyamasunder N.,Singh Bhisham NarayanORCID

Abstract

AbstractElectrospun nanofibers have been extensively investigated in recent years for the generation of various advanced sensing technique like high efficiency biosensors, chemosensors, colorimetric sensing strip, and nanofibrillar-based biosorbent for waste water management, remediation and environmental monitoring. The present review article highlights various different types of conventional sensors, their limitations and the further advancement towards development of highly sensitive sensor with faster response time using functionalized nanofibrous matrix. It also explains the various approaches for the generation of nanofibrous matrix through melt blowing, force spinning, template melt extrusion and electrospinning methods and their further modification with suitable probe for the detection and elimination of various water contaminants. This review discussed various nanofibrous matrices that have been modified for the sensing and remediation of heavy metals such as mercury (Hg), lead (Pb), copper (Cu), organic pollutants such as dye, petroleum, phenolic compounds, and microorganisms such as Escherichia coli (E. coli), BVDV (bovine viral diarrhoea virus), Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans). Finally, the various challenges and future perspectives associated with the usage of nanofibrous matrix-based sensors for detection and remediation of water pollutant are discussed.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Cell Biology,Physical and Theoretical Chemistry,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3