Formation of One-Dimensional van der Waals Heterostructures via Self-Assembly of Blue Phosphorene Nanoribbons to Carbon Nanotubes

Author:

Sun Yang,Zhou Kun,Wang Ruijie,Zhang ZhuhuaORCID,Tang Chun,Guo Wanlin

Abstract

AbstractVan der Waals heterostructures composed of low-dimensional atomic layers host rich physics for new device applications, such as magic-angle twisted bilayer graphene and coaxial multi-walled hetero-nanotubes. Aside from exploring their abnormal physical behavior, fabrication of such structures also presents a great challenge to this area, owing to the subtle and sensitive interactions among neighboring layers. Here we show by molecular dynamics simulations that narrow blue phosphorene nanoribbons can be encapsulated into carbon nanotubes driven by van der Waals interactions and form one-dimensional heterostructures. It shows that by varying carbon nanotube diameters and nanoribbon width, the nanoribbons can either retain their original straight structures or twist into tubular structures. Wrapping phases are also observed for large-sized blue phosphorus. It is found that the underlying mechanism originates from the competition between van der Waals energy and bending energy induced by tube curvature. A phase diagram of the resultant 1D structure is thus obtained based on a simple analysis of energetics. The results are expected to stimulate further experimental efforts in fabricating one-dimensional van der Waals heterostructues with desired functionality.

Funder

National Natural Science Foundation of China

Jiangsu Province NSF

Jiangsu Province Innovation Grant for Graduate Students

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3