Efficient and Reliable Nanoindentation Simulation by Dislocation Loop Erasing Method

Author:

Shuang Fei,Xiao PanORCID,Bai Yilong

Abstract

Abstract Nanoindentation is a useful technique to measure material properties at microscopic level. However, the intrinsically multiscale nature makes it challenging for large-scale simulations to be carried out. It is shown that in molecular statics simulations of nanoindentation, the separated dislocation loops (SDLs) are trapped in simulation box which detrimentally affects the plastic behavior in the plastic zone (PZ); and the long-distance propagation of SDLs consumes much computational cost yet with little contribution to the variation of tip force. To tackle the problem, the dislocation loop erasing (DLE) method is proposed in the work to alleviate the influence of artificial boundary conditions on the SDL–PZ interaction and improve simulation efficiency. Simulation results indicate that the force–depth curves obtained from simulations with and without DLE are consistent with each other, while the method with DLE yields more reasonable results of microstructural evolution and shows better efficiency. The new method provides an alternative approach for large-scale molecular simulation of nanoindentation with reliable results and higher efficiency and also sheds lights on improving existing multiscale methods.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program (B) of the Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3