Smart Sustainable Cities of the New Millennium: Towards Design for Nature

Author:

Catalano ChiaraORCID,Meslec Mihaela,Boileau Jules,Guarino Riccardo,Aurich Isabella,Baumann Nathalie,Chartier Frédéric,Dalix Pascale,Deramond Sophie,Laube Patrick,Lee Angela Ka Ki,Ochsner Pascal,Pasturel Marine,Soret Marie,Moulherat Sylvain

Abstract

AbstractUrban environments consist of a mosaic of natural fragments, planned and unintentional habitats hosting both introduced and spontaneous species. The latter group exploits abandoned and degraded urban niches which, in the case of plants, form what is called the third landscape. In the Anthropocene, cities, open spaces and buildings must be planned and designed considering not only human needs but also those of other living organisms. The scientific approach of habitat sharing is defined as reconciliation ecology, whilst the action of implementing the ecosystem services and functioning of such anthropogenic habitats is called Urban Rehabilitation. However, urban development still represents the main cause of biodiversity loss worldwide. Yet, the approach of planners and landscape architects highly diverges from that of ecologists and scientists on how to perceive, define and design urban green and blue infrastructure. For instance, designers focus on the positive impact that nature (generally associated with indoor and outdoor greeneries) has on human well-being, often neglecting ecosystems’ health. Instead, considering the negative impact of any form of development and to achieve the no net loss Aichi’s objectives, conservationists apply mitigation hierarchy policies to avoid or reduce the impact and to offset biodiversity. The rationale of this review paper is to set the fundamentals for a multidisciplinary design framework tackling the issue of biodiversity loss in the urban environment by design for nature. The method focuses on the building/city/landscape scales and is enabled by emerging digital technologies, i.e., geographic information systems, building information modelling, ecological simulation and computational design.

Funder

Zurich University of Applied Science

French Region Occitanie

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3