1. 2023 report - checkpoint research cybersecurity report. https://www.i-maxpr.com/x/13167/c6e/c6e9c743674c8e0971480e58d23f9cc6.pdf. Accessed 15 June 2023
2. Alexey, K., Ian, G., Samy, B.: Adversarial machine learning at scale. In: International Conference on Learning Representations (2017)
3. Anderson, H.S., Kharkar, A., Filar, B., Evans, D., Roth, P.: Learning to evade static pe machine learning malware models via reinforcement learning. (2018) arXiv preprint arXiv:1801.08917
4. Backes, M., Manoharan, P., Grosse, K., Papernot, N.: Adversarial perturbations against deep neural networks for malware classification. Comput Res Reposit (CoRR) (2016)
5. Backes, M., Manoharan, P., Grosse, K., Papernot, N..: Adversarial perturbations against deep neural networks for malware classification. Comput. Res. Reposit (CoRR) (2016)