Gridchain: an investigation of privacy for the future local distribution grid

Author:

Picazo-Sanchez PabloORCID,Almgren Magnus

Abstract

AbstractAs part of building the smart grid, there is a massive deployment of so-called smart meters that aggregate information and communicate with the back-end office, apart from measuring properties of the local network. Detailed measurements and communication of, e.g., consumption allows for remote billing, but also in finding problems in the distribution of power and overall to provide data to be used to plan future upgrades of the network. From a security perspective, a massive deployment of such Internet of Things (IoT) components increases the risk that some may be compromised or that collected data are used for privacy-sensitive inference of the consumption of households. In this paper, we investigate the privacy concerns regarding detailed readings of smart meters for billing purposes. We present Gridchain, a solution where households can opt-in to hide their consumption patterns and thus make Non-Intrusive Load Monitoring (NILM) more challenging. Households form groups where they can trade real consumption among themselves to achieve reported consumption that would be resistant to NILM. Gridchain is built on a publish/subscribe model and uses a permissioned blockchain to record any trades, meaning that dishonest households can be discovered and punished if they steal from other households in the group or the electricity company in the end. We implement and release a proof of concept of Gridchain and use public datasets to allow reproducibility. Our results show that even if an attacker has access to the reported electricity consumption of any member of a Gridchain group, this reported consumption is significantly far from the actual consumption to allow for a detailed fingerprint of the household activities.

Funder

Swedish Foundation for Strategic Research

Swedish Research Council

Swedish Civil Contingencies Agency

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Safety, Risk, Reliability and Quality,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3