Mitigation of privilege escalation attack using kernel data relocation mechanism

Author:

Kuzuno Hiroki,Yamauchi Toshihiro

Abstract

AbstractKernel memory corruption, which leads to a privilege escalation attack, has been reported as a security threat to operating systems. To mitigate privilege escalation attacks, several security mechanisms are proposed. Kernel address space layout randomization randomizes kernel code and data virtual address layout on the kernel memory. Privileged information protection methods monitor and restore illegal privilege modifications. Therefore, if an adversary identifies the kernel data containing privileged information, an adversary can achieve the privilege escalation in a running kernel. This paper proposes a kernel data relocation mechanism (KDRM) that dynamically relocates privileged information in the running kernel to mitigate privilege escalation attacks. The KDRM introduces the relocation-only page into the kernel. The relocation-only page allows the virtual address of the privileged information to change by dynamically relocating for the user process. One of the relocation-only pages is randomly selected to store the privileged information at the system call invocations. The evaluation results indicate the possibility of mitigating privilege escalation attacks through direct memory overwriting by user processes on Linux with KDRM. The KDRM showed an acceptable performance cost. The overhead of a system call was up to 11.52%, and the kernel performance score was 0.11%.

Funder

Kobe University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3