Securing the IoT ecosystem: ASIC-based hardware realization of Ascon lightweight cipher

Author:

Khan Safiullah,Inayat Kashif,Muslim Fahad Bin,Shah Yasir Ali,Atif Ur Rehman Muhammad,Khalid Ayesha,Imran Malik,Abdusalomov Akmalbek

Abstract

AbstractThe Internet of Things (IoT) nodes consist of sensors that collect environmental data and then perform data exchange with surrounding nodes and gateways. Cybersecurity attacks pose a threat to the data security that is being transmitted in any IoT network. Cryptographic primitives are widely adopted to address these threats; however, the substantial computation demands limit their applicability in the IoT ecosystem. In addition, each IoT node varies with respect to the area and throughput (TP) requirements, thus demanding flexible implementation for encryption/decryption processes. To solve these issues, this work implements the NIST lightweight cryptography standard, Ascon, on a SAED 32 nm process design kit (PDK) library by employing loop folded, loop unrolled and fully unrolled architectures. The fully unrolled architecture can achieve the highest TP but at the cost of higher area utilisation. Unrolling by a lower factor results in lower area implementations, enabling the exploration of design space to tackle the trade-off between area and TP performance of the design. The implementation results show that, for loop folded architecture, Ascon-128 and Ascon-128a require 36.7k $$\upmu \textrm{m}^{2}$$ μ m 2 and 38.5k $$\upmu \textrm{m}^{2}$$ μ m 2 chip area, respectively compared to 277.1k $$\upmu \textrm{m}^{2}$$ μ m 2 and 306.6k $$\upmu \textrm{m}^{2}$$ μ m 2 required by their fully unrolled implementations. The proposed implementation strategies can adjust the number of rounds to accommodate the varied requirements of IoT ecosystems. An implementation with an open-source 45 nm PDK library is also undertaken for enhanced generalization and reproducibility of the results.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3