Publisher
Springer Science and Business Media LLC
Reference16 articles.
1. A. Ancona, K. Elworthy, M. Emery, and H. Kunita, Stochastic Differential Geometry at Saint-Flour, Probab. St.-Flour, Springer, Berlin, Heidelberg (2012); https://books.google.co.jp/books?id=nlCeMQEACAAJ.
2. P. Andersson and A. Kohatsu-Higa, “Unbiased simulation of stochastic differential equations using parametrix expansions,” Bernoulli, 23, No. 3, 2028–2057 (2016).
3. P. Andersson, A. Kohatsu-Higa, and T. Yuasa, “Second order probabilistic parametrix method for unbiased simulation of stochastic differential equations,” Stochast. Proc. Appl., 130, No. 9, 5543–5574 (2020); DOI: https://doi.org/10.1016/j.spa.2020.03.016; https://ideas.repec.org/a/eee/spapps/v130y2020i9p5543-5574.html.
4. R. F. Bass and E. A. Perkins, “On uniqueness in law for parabolic SPDEs and infinite-dimensional SDEs,” Electron. J. Probab., 17, No. 36, 1–54 (2012); DOI: https://doi.org/10.1214/EJP.v17-2049; https://doi.org/https://doi.org/10.1214/EJP.v17-2049.
5. S. Bodnarchuk, D. Ivanenko, A. Kohatsu-Higa, and A. Kulik, “Improved local approximation for multidimensional diffusions: the g-rates,” Theory Probab. Math. Statist., 101, No. 1 (2021); DOI: https://doi.org/10.1090/tpms/1109.