Publisher
Springer Science and Business Media LLC
Reference7 articles.
1. T. Bridgeland, A. King, and M. Reid, “The McKay correspondence as an equivalence of derived categories,” J. Amer. Math. Soc., 14, 535–554 (2001).
2. F. Butin and G. S. Perets, “McKay correspondence and the branching law for finite subgroups of SL3ℂ,” J. Group Theory, 17, Issue 2, 191–251 (2014).
3. Y. Gomi, I. Nakamura, and K. Shinoda, “Coinvariant algebras of finite subgroups of SL3ℂ,” Can. J. Math., 56, 495–528 (2004).
4. G. Gonzalez-Sprinberg and J.-L. Verdier, “Construction géométrique de la correspondance de McKay,” An. Sci. de l’E. N. S., 4ème Sér., 16, No. 3, 409–449 (1983).
5. A. Hanany and Y.-H. He, “A monograph on the classification of the discrete subgroups of SU(4),” JHEP, 27 (2001).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Quivers supporting twisted Calabi-Yau algebras;Journal of Pure and Applied Algebra;2021-09
2. CONNECTIVITY PROPERTIES OF MCKAY QUIVERS;Bulletin of the Australian Mathematical Society;2020-10-02