Publisher
Springer Science and Business Media LLC
Reference20 articles.
1. L. C. Andrews, Special Functions of Mathematics for Engineers, Oxford Univ. Press, Oxford (1998).
2. E. Hendriksen and H. van Rossum, “Orthogonal Laurent polynomials,” Nederl. Akad. Wetensch. Indag. Math., 48, No. 1, 17–36 (1986).
3. E. Horozov, “d-Orthogonal analogs of classical orthogonal polynomials,” SIGMA Symmetry Integrability Geom. Methods Appl., 14, Article 063 (2018), 27 p.
4. E. Horozov, “Vector orthogonal polynomials with Bochner’s property,” Constr. Approx., 48, No. 2, 201–234 (2018).
5. M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge Univ. Press, Cambridge (2005).