1. Benzineb, K., & Guyot, J. (2011). Automated patent classification. In M. Lupu, K. Mayer, J. Tait, & A. J. Trippe (Eds.), Current challenges in patent information retrieval (Vol. 29, pp. 239–261). Berlin: Springer.
2. Carmona-Cejudo, J. M., Baena-García, M., Bueno, R. M., Gama, J., & Bifet, A. (2011). Using gnusmail to compare data stream mining methods for on-line email classification. Journal of Machine Learning Research-Proceedings Track, 17, 12–18.
3. Cohen, A., Bhupatiraju, R., & Hersh, W. (2004). Feature generation, feature selection, classifiers, and conceptual drift for biomedical document triage. In Proceedings of the thirteenth text retrieval conference-TREC.
4. Dagan, I., Karov, Y., Roth, D. (1997). Mistake-driven learning in text categorization. In Proceedings of 2nd conference on empirical methods in NLP, Providence, pp. 55–63.
5. D’hondt, E., Verberne, S., Weber, N., Koster, K., & Boves, L. (2012). Using skipgrams and pos-based feature selection for patent classification. Computational Linguistics in the Netherlands Journal, 2, 52–70.