sMARE: a new paradigm to evaluate and understand query performance prediction methods

Author:

Faggioli GuglielmoORCID,Zendel Oleg,Culpepper J. Shane,Ferro Nicola,Scholer Falk

Abstract

AbstractQuery performance prediction (QPP) has been studied extensively in the IR community over the last two decades. A by-product of this research is a methodology to evaluate the effectiveness of QPP techniques. In this paper, we re-examine the existing evaluation methodology commonly used for QPP, and propose a new approach. Our key idea is to model QPP performance as a distribution instead of relying on point estimates. To obtain such distribution, we exploit the scaled Absolute Ranking Error (sARE) measure, and its mean the scaled Mean Absolute Ranking Error (sMARE). Our work demonstrates important statistical implications, and overcomes key limitations imposed by the currently used correlation-based point-estimate evaluation approaches. We also explore the potential benefits of using multiple query formulations and ANalysis Of VAriance (ANOVA) modeling in order to measure interactions between multiple factors. The resulting statistical analysis combined with a novel evaluation framework demonstrates the merits of modeling QPP performance as distributions, and enables detailed statistical ANOVA models for comparative analyses to be created.

Funder

australian research council

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Information Systems

Reference59 articles.

1. Amati, G., Carpineto, C., & Romano, G. (2004). Query difficulty, robustness, and selective application of query expansion. In Proceedings of the ECIR (pp. 127–137). Springer.

2. Aslam, J. A., & Pavlu, V. (2007). Query hardness estimation using Jensen-Shannon divergence among multiple scoring functions. In Proceedings of the ECIR (pp. 198–209). Springer.

3. Bailey, P., Moffat, A., Scholer, F., & Thomas, P. (2016) UQV100: A test collection with query variability. In Proceedings of the SIGIR (pp 725–728).

4. Bailey, P., Moffat, A., Scholer, F., & Thomas, P. (2017) Retrieval consistency in the presence of query variations. In Proceedings of the SIGIR (pp 395–404).

5. Banks, D., Over, P., & Zhang, N. F. (1999). Blind men and elephants: Six approaches to TREC data. Information Retrieval, 1(1–2), 7–34.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predictive analysis visualization component in simulated data streams;Discover Computing;2024-06-14

2. Query Performance Prediction: From Fundamentals to Advanced Techniques;Lecture Notes in Computer Science;2024

3. Context-Aware Query Term Difficulty Estimation for Performance Prediction;Lecture Notes in Computer Science;2024

4. Can We Predict QPP? An Approach Based on Multivariate Outliers;Lecture Notes in Computer Science;2024

5. Neural Disentanglement of Query Difficulty and Semantics;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3