Learning heterogeneous subgraph representations for team discovery

Author:

Hamidi Rad Radin,Nguyen Hoang,Al-Obeidat Feras,Bagheri Ebrahim,Kargar Mehdi,Srivastava Divesh,Szlichta Jaroslaw,Zarrinkalam Fattane

Funder

NSERC

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Information Systems

Reference85 articles.

1. Adhikari, B., Zhang, Y., Ramakrishnan, N., Prakash, B.A.: Sub2vec: Feature learning for subgraphs. In: Phung, D.Q., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) Advances in Knowledge Discovery and Data Mining - 22nd Pacific-Asia Conference, PAKDD 2018, Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10938, pp. 170–182. Springer, ??? (2018). 10.1007/978-3-319-93037-4_14.

2. Alsentzer, E., Finlayson, S.G., Li, M.M., Zitnik, M.: Subgraph neural networks. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, Virtual (2020). https://proceedings.neurips.cc/paper/2020/hash/5bca8566db79f3788be9efd96c9ed70d-Abstract.html

3. An, A., Kargar, M., Zihayat, M.: Finding affordable and collaborative teams from a network of experts. In: Proceedings of the 13th SIAM International Conference on Data Mining, May 2-4, 2013. Austin, Texas, USA, pp. 587–595. SIAM, ??? (2013). 10.1137/1.9781611972832.65.

4. Baykasoglu, A., Dereli, T., & Das, S. (2007). Project team selection using fuzzy optimization approach. Cybernetics and Systems, 38(2), 155–185. https://doi.org/10.1080/01969720601139041

5. Botterman, H., Lamarche-Perrin, R.: Link weights recovery in heterogeneous information networks. CoRR abs/1906.11727 (2019) 1906.11727

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Collaborative Team Recommendation for Skilled Users: Objectives, Techniques, and New Perspectives;Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization;2024-06-27

2. Interactive Topic Tagging in Community Question Answering Platforms;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3