Active learning for ranking with sample density

Author:

Cai Wenbin,Zhang Muhan,Zhang Ya

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Information Systems

Reference33 articles.

1. Ailon, N. (2011). Active learning ranking from pairwise preferences with almost optimal query complexity. In Advances in neural information processing systems (NIPS’ 11) (pp. 810–818).

2. Aslam, J. A., Kanoulas, E., Pavlu, V., Savev, S., & Yilmaz, E. (2009). Document selection methodologies for efficient and effective learning-to-rank. In Proceedings of the 32nd annual international ACM SIGIR conference on research and development in information retrieval (SIGIR’ 09) (pp. 468–475).

3. Banerjee, S., Dubey, A., Machchhar, J., & Chakrabarti, S. (2009). Efficient and accurate local learning for ranking. In Proceedings of SIGIR’ 09 workshop on learning to rank for information retrieval (pp. 1–8).

4. Cai, W., & Zhang, Y. (2012). Variance maximization via noise injection for active sampling in learning to rank. In Proceedings of the 21st conference on information and knowledge management (CIKM’ 12) (pp. 1809–1813).

5. Cai, P., Gao, W., Zhou, A. Y., & Wong, K. F. (2011). Query weighting for ranking model adaptation. In Proceedings of the 49th annual meeting of the association for computational linguistics (ACL’ 11) (pp. 112–122).

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Simple yet Effective Framework for Active Learning to Rank;Machine Intelligence Research;2024-01-15

2. ALGAN: Time Series Anomaly Detection with Adjusted-LSTM GAN;2023-11-16

3. Active learning sample selection based on multicriteria;Journal of Near Infrared Spectroscopy;2023-11-08

4. Active Learning for Effectively Fine-Tuning Transfer Learning to Downstream Task;ACM Transactions on Intelligent Systems and Technology;2021-03

5. Deep Bayesian Active Learning for Learning to Rank: A Case Study in Answer Selection;IEEE Transactions on Knowledge and Data Engineering;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3