1. Amati, G., & van Rijsbergen, C. J. (2002). Probabilistic models of information retrieval based on measuring the divergence from randomness. ACM Transactions on Information System, 20(4), 357–389.
2. Balog, K., Azzopardi, L., & de Rijke, M. (2009). A language modeling framework for expert finding. Information Processing & Management, 45(1), 1–19.
3. Dave, K., Lawrence, S., & Pennock, D. M. (2003). Mining the peanut gallery: Opinion extraction and semantic classification of product reviews. In WWW ’03: proceedings of the twelfth international conference on World Wide Web (pp. 519–528). ACM Press.
4. Fang, H., Tao, T., & Zhai. C. (2004). A formal study of information retrieval heuristics. In SIGIR ’04: proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval (ppp. 49–56). New York, NY, USA: ACM Press.
5. Fang, H., & Zhai, C. (2007). Probabilistic models for expert finding. In ECIR (pp. 418–430).