Efficient query processing techniques for next-page retrieval

Author:

Mackenzie JoelORCID,Petri Matthias,Moffat Alistair

Abstract

AbstractIn top-k ranked retrieval the goal is to efficiently compute an ordered list of the highest scoring k documents according to some stipulated similarity function such as the well-known BM25 approach. In most implementation techniques a min-heap of size k is used to track the top scoring candidates. In this work we consider the question of how best to retrieve the second page of search results, given that a first page has already been computed; that is, identification of the documents at ranks $$k+1$$ k + 1 to 2k for some query. Our goal is to understand what information is available as a by-product of the first-page scoring, and how it can be employed to accelerate the second-page computation, assuming that the second-page of results is required for only a fraction of the query load. We propose a range of simple, yet efficient, next-page retrieval techniques which are suitable for accelerating Document-at-a-Time mechanisms, and demonstrate their performance on three large text collections.

Funder

Australian Research Council

University of Melbourne

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Many are Better than One: Algorithm Selection for Faster Top-K Retrieval;Information Processing & Management;2023-07

2. Managing and Retrieving Bilingual Documents Using Artificial Intelligence-Based Ontological Framework;Computational Intelligence and Neuroscience;2022-08-25

3. Faster Learned Sparse Retrieval with Guided Traversal;Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval;2022-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3