1. Agrawal, R., Gollapudi, S., Halverson, A., & Ieong, S. (2009). Diversifying search results. In WSDM ’09: Proceedings of the 2nd international conference on web search and web data mining (pp. 5–14). ACM.
2. Barlow, R. E., Brunk, H. D., Bartholomew, D. J., & Bremner, J. M. (1972). Statistical inference under order restrictions: The theory and application of isotonic regression. New York: Wiley.
3. Burges, C. J., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., et al. (2005). Learning to rank using gradient descent. In Proceedings of the international conference on machine learning.
4. Carbonell, J., & Goldstein, J. (1998). The use of MMR, diversity-based reranking for reordering documents and producing summaries. In Proceedings of the 21st annual international ACM SIGIR conference on research and development in information retrieval (pp. 335–336).
5. Carterette, B., & Chandar, P. (2009). Probabilistic models of ranking novel documents for faceted topic retrieval. In CIKM ’09: Proceeding of the 18th ACM conference on information and knowledge management.