Abstract
AbstractThe idea of artificial intelligence for social good (henceforth AI4SG) is gaining traction within information societies in general and the AI community in particular. It has the potential to tackle social problems through the development of AI-based solutions. Yet, to date, there is only limited understanding of what makes AI socially good in theory, what counts as AI4SG in practice, and how to reproduce its initial successes in terms of policies. This article addresses this gap by identifying seven ethical factors that are essential for future AI4SG initiatives. The analysis is supported by 27 case examples of AI4SG projects. Some of these factors are almost entirely novel to AI, while the significance of other factors is heightened by the use of AI. From each of these factors, corresponding best practices are formulated which, subject to context and balance, may serve as preliminary guidelines to ensure that well-designed AI is more likely to serve the social good.
Funder
The Alan Turing Institute
Google UK Ltd
Engineering and Physical Sciences Research Council
Facebook Inc.
Google
Microsoft
Publisher
Springer Science and Business Media LLC
Subject
Management of Technology and Innovation,Health Policy,Issues, ethics and legal aspects,Health (social science)
Reference85 articles.
1. AI for Good Global Summit (2019) 28–31 May 2019, Geneva, Switzerland. AI for Good Global Summit. Accessed April 12, 2019. https://aiforgood.itu.int/.
2. Al-Abdulkarim, L., Atkinson, K., & Bench-Capon, T. (2015). Factors, issues and values: revisiting reasoning with cases. In Proceedings of the 15th international conference on artificial intelligence and law, 3–12. ICAIL ’15. New York, NY, USA: ACM. https://doi.org/10.1145/2746090.2746103.
3. Banjo, O. (2018). Bias in maternal ai could hurt expectant black mothers. Medium (blog). September 21, 2018. https://medium.com/theplug/bias-in-maternal-ai-could-hurt-expectant-black-mothers-e41893438da6.
4. Baum, S. D. (2017). Social choice ethics in artificial intelligence. AI & SOCIETY,32, 1–12.
5. Bilgic, M., & Mooney, R. (2005). Explaining recommendations: Satisfaction vs. promotion. In Beyond personalization workshop.
Cited by
176 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献