Modifying the linear two-step Windmeijer correction for the presence of spatial error dependence

Author:

Fingleton BernardORCID

Abstract

AbstractThe aim in the paper is to show how the presence of spatial dependence affects the often-adopted Windmeijer (J Econom 126:25–51, 2005) finite sample correction (For example it is an option facilitating robust estimation in the software package Stata, which is used by many applied econometricians and data analysts.), which corrects the downward bias in estimated parameter standard errors. Windmeijer (2005) explains why, with numerous instruments, the estimated asymptotic standard errors of the efficient, two-step, GMM estimator are downward biased in small samples. GMM estimation is based on an estimated optimal weight matrix, which is the inverse of the covariance of the sample moments, and the bias results from the weight matrix being evaluated at estimated, rather than the true values of parameters. Hwang et al. (J Econom 229(2):276–298, 2022) provide a correction to the Windmeijer (2005) finite sample correction to allow for over-identification bias. The novel contribution of the current paper is to show how the Windmeijer (2005) correction can be modified given spatial dependence in the error term of a model with moments conditions that are linear in parameters estimated by GMM, leading to corrected standard errors and therefore more accurate inference. Monte Carlo simulations are used to demonstrate the effect of the modification and two examples using real data shows how inference may be affected by ignoring the effect of spatial error dependence.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3