Performance of different microfluidic devices in continuous liquid-liquid separation

Author:

Oldach BastianORCID,Chiang Ya-YuORCID,Ben-Achour LeonORCID,Chen Tai-JhenORCID,Kockmann NorbertORCID

Abstract

AbstractDroplet-based microfluidics exhibit numerous benefits leading to relevant innovations and many applications in various fields. The precise handling of droplets in capillaries, including droplet formation, manipulation, and separation, is essential for successful operation. Only a few reports are known concerning the separation of segmented flows, particularly the continuous separation of droplets, which is of high interest regarding the control of biochemical and chemical reactions or other applications where the contact time of the involved phases is crucial. Here, the separation must be flexible and adjusted to different flow parameters, such as the surface tension, the volumetric flow rates, and their ratios. This contribution presents two novel open-source approaches based on additive manufacturing and mechanical deforming for continuous liquid–liquid separation under various flow conditions. The Laplace pressure is the driving force for the separation, which is adjusted to the flow conditions by adapting the distance of pinning points provided by the design of the devices. Details of the device design and experimental setup are shown along with limitations to promote further development and to increase availability for researchers. With the right parameters, sophisticated separations can be realized by inexpensive laboratory equipment and simple control of them. It was found that the distance between the pinning points needs to enlarged for increasing volumetric flow rates and reduced for higher viscosities of the continuous phase respectively higher amounts of the dispersed phase. The open source approach of this article expands the exploration space in addition to commercially available phase separators only available to a selected group of people. Graphical Abstract

Funder

Ministry of Science and Technology

Deutsche Forschungsgemeinschaft

Technische Universität Dortmund

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3