Abstract
AbstractDynamic irradiation is a potent option to influence the interaction between photochemical reactions and mass transport to design high performant and efficient photochemical processes. To systematically investigate the impact of this parameter, the photocatalytic reduction of nitrobenzene was conducted as a test reaction. Dynamic irradiation was realized through provoked secondary flow patterns, multiple spatially distributed light emitting diodes (LEDs) and electrical pulsation of LEDs. A combined experimental and theoretical approach revealed significant potential to enhance photochemical processes. The reaction rate was accelerated by more than 70% and even more important the photonic efficiency was increased by more than a factor of 4. This renders imposed dynamic irradiation an innovative and powerful tool to intensify photoreactions on the avenue to large scale sustainable photochemical processes.
Funder
Bundesministerium für Wirtschaft und Energie
Universität Ulm
Publisher
Springer Science and Business Media LLC
Subject
Organic Chemistry,Fluid Flow and Transfer Processes,Chemistry (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献