Abstract
AbstractCommercial polystyrene Merrifield-type resins have been post-synthetically functionalised with BODIPY photosensitisers via a novel aryl ester linking strategy in continuous-flow. A unique synthetic advantage of post-synthetically modifying heterogeneous materials in flow was identified. The homogeneous analogues of the polymer-supported BODIPYs were synthesised and used as reference to assess photophysical properties altered by the polymer-support and linker. The homogeneous and polymer-supported BODIPYs were applied in visible-light photosensitisation of singlet oxygen for the conversion of α-terpinene to ascaridole. Materials produced in flow were superior to batch in terms of functional loading and photosensitisation efficiency. Flow photochemical reactions generally outperformed batch by a factor of 4 with respect to rate of reaction. The polymer-supported BODIPY resins could be irradiated for 96 h without loss of photosensitising ability. Additional material synthetic modification and conditions optimisation using an in-line NMR spectrometer resulted in a 24-fold rate enhancement from the initial material and conditions.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Organic Chemistry,Fluid Flow and Transfer Processes,Chemistry (miscellaneous)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献