Optimization of a 3D-printed tubular reactor for free radical polymerization by CFD

Author:

Hapke SörenORCID,Luinstra Gerrit AlbertORCID,Zentel Kristina MariaORCID

Abstract

AbstractA flow reactor for the complex reaction network of the free radical solution polymerization of n-butyl acrylate was optimized by a combination of kinetic modeling, computational fluid dynamics (CFD) and additive manufacturing. CFD was used to model a flow reactor with SMX mixing elements. An optimized geometry was 3D-printed from polypropylene. The modeled residence time behavior was compared to relevant experiments, giving a validation for the flow behavior of the reactor. A kinetic model for the free radical solution polymerization of n-butyl acrylate (BA) was in addition implemented into the CFD model. It was used to predict the polymerization behavior in the flow reactor and the resulting product properties. The experimental and computational results were in acceptable agreement. Graphical abstract

Funder

Max-Buchner-Forschungsstipendium

Publisher

Springer Science and Business Media LLC

Subject

Organic Chemistry,Fluid Flow and Transfer Processes,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3