Abstract
AbstractA flow reactor for the complex reaction network of the free radical solution polymerization of n-butyl acrylate was optimized by a combination of kinetic modeling, computational fluid dynamics (CFD) and additive manufacturing. CFD was used to model a flow reactor with SMX mixing elements. An optimized geometry was 3D-printed from polypropylene. The modeled residence time behavior was compared to relevant experiments, giving a validation for the flow behavior of the reactor. A kinetic model for the free radical solution polymerization of n-butyl acrylate (BA) was in addition implemented into the CFD model. It was used to predict the polymerization behavior in the flow reactor and the resulting product properties. The experimental and computational results were in acceptable agreement.
Graphical abstract
Funder
Max-Buchner-Forschungsstipendium
Publisher
Springer Science and Business Media LLC
Subject
Organic Chemistry,Fluid Flow and Transfer Processes,Chemistry (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献