Refinement of cast microstructure of A517 steel by addition of TiB2

Author:

Liang Guo-fangORCID,Liu Yin-gang,Yang Xian-liang,Tan Qi-yang,Wu Tao,Wang Jian-jun,Atrens Andrej,Tian Zhi-qiang,Zhang Ming-xing

Abstract

AbstractThe effect of TiB2 addition on microstructure refinement of the as-cast and reheated A517 steel has been investigated. 0.1 wt.% TiB2 addition resulted in a reduction in equiaxed γ grain size from 990 ± 183 to 116 ± 35 μm and an increase in the volume fraction of equiaxed γ grain region from 5% to 67% in the as-cast A517 steel ingots. Microstructure analysis identified TiN particles rather than TiB2. This is attributed to the low thermodynamic stability of TiB2, leading to its decomposition into free Ti and B elements at an elevated temperature. Then, chemical reaction between the free Ti and residual nitrogen in the liquid resulted in the formation of TiN. Hence, it is considered that TiN acted as heterogeneous nucleation sites for the δ-ferrite. This initiated the refinement and columnar to equiaxed transition of δ-dendrites. As a result, the subsequently formed γ grains were correspondingly refined. Such microstructure refinement led to improvement of the yield strength and ultimate tensile strength of the as-cast A517 steel. However, the reheating of the as-cast A517 steel resulted in a marginal microstructure refinement in the samples with low TiB2 addition. This is attributed to the limited pinning effect of the coarse TiN particles formed during casting process. Consequently, the tensile properties of the reheated A517 steel remained unaffected by the TiB2 addition.

Funder

HBIS Group

UQRT Scholarship

The University of Queensland

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3