Dynamical behavior of a hepatitis B epidemic model and its NSFD scheme

Author:

Gümüş MehmetORCID,Türk KemalORCID

Abstract

AbstractHepatitis is inflammation of the liver, and one of its types, hepatitis B, is a contagious infection. Using mathematical models, the nature of the spread of the Hepatitis B virus can be predicted. In the present paper, a hepatitis B epidemic model with a Beddington–DeAngelis type incidence rate and a constant vaccination rate is considered. Some dynamical properties of this model, such as non-negativity, boundedness character, the basic reproduction number $$\mathcal {R}_0$$ R 0 , stability nature, and the bifurcation phenomenon, are investigated. By the Bendixson theorem, it is demonstrated that the disease-free equilibrium is globally asymptotically stable. It is shown that a transcritical bifurcation phenomenon occurs when $$\mathcal {R}_0=1$$ R 0 = 1 . It is concluded that the endemic equilibrium is globally asymptotically stable when $$\mathcal {R}_0>1$$ R 0 > 1 , by utilizing Dulac’s criteria. Also, a discrete system of difference equations is obtained by constructing a non-standard finite difference (NSFD) scheme for the continuous model. It is shown that the solutions of this discrete system are dynamically consistent for all finite step sizes. The theoretical results obtained are also supported and visualized by numerical simulations. These simulations also demonstrate that the NSFD scheme produces much more efficient results than the Euler or RK4 schemes, as shown in the theoretical results obtained.

Funder

Zonguldak Bulent Ecevit University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3