Learning unbounded-domain spatiotemporal differential equations using adaptive spectral methods

Author:

Xia MingtaoORCID,Li Xiangting,Shen Qijing,Chou TomORCID

Abstract

AbstractRapidly developing machine learning methods have stimulated research interest in computationally reconstructing differential equations (DEs) from observational data, providing insight into the underlying mechanistic models. In this paper, we propose a new neural-ODE-based method that spectrally expands the spatial dependence of solutions to learn the spatiotemporal DEs they obey. Our spectral spatiotemporal DE learning method has the advantage of not explicitly relying on spatial discretization (e.g., meshes or grids), thus allowing reconstruction of DEs that may be defined on unbounded spatial domains and that may contain long-ranged, nonlocal spatial interactions. By combining spectral methods with the neural ODE framework, our proposed spectral DE method addresses the inverse-type problem of reconstructing spatiotemporal equations in unbounded domains. Even for bounded domain problems, our spectral approach is as accurate as some of the latest machine learning approaches for learning or numerically solving partial differential equations (PDEs). By developing a spectral framework for reconstructing both PDEs and partial integro-differential equations (PIDEs), we extend dynamical reconstruction approaches to a wider range of problems, including those in unbounded domains.

Funder

Army Research Office

Publisher

Springer Science and Business Media LLC

Reference47 articles.

1. Bar, L., Sochen, N.: Unsupervised deep learning algorithm for PDE-based forward and inverse problems. arXiv preprint arXiv:1904.05417 (2019)

2. Stephany, R., Earls, C.: PDE-LEARN: using deep learning to discover partial differential equations from noisy, limited data. Neural Netw. 106242 (2024)

3. Long, Z., Lu, Y., Ma, X., Dong, B.: PDE-net: learning PDEs from data. In: International Conference on Machine Learning, pp. 3208–3216 (2018). PMLR

4. Churchill, V., Chen, Y., Xu, Z., Xiu, D.: Dnn modeling of partial differential equations with incomplete data. J. Comput. Phys. 493, 112502 (2023)

5. Long, Z., Lu, Y., Dong, B.: PDE-net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network. J. Comput. Phys. 399, 108925 (2019)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3