Dynamic Compression Model Incorporating Elastic Nonlinearity of Paperboard

Author:

Yang LiORCID

Abstract

AbstractSpring of constant elasticity is a concept from theories of extension while elastic nonlinearity in compressive deformation is a general phenomenon for polymeric materials involved in offset or flexographic printing, paper board, polymer plate, and cushioning tape. This phenomenon needs therefore to be coped with by the model of printing dynamics. We hereby present an extended approach based on the Maxwell material model. In the extended approach, a compression process is subdivided into (or approximated by) sequential subprocesses. The elastic modulus may vary from one subsection to another but remains constant in each of the subprocesses. With the extended approach dynamic behaviours (compression/recovering) of paperboard can be reproduced and predicted. As a concrete example, dynamic behaviours of paper board in the print nip were simulated with satisfactory outcome. The simulation also revealed that viscoelasticity of the board is the origin of mechanical hysteresis of the stress–strain curve. Due to viscoelasticity and nonlinearity of the materials careful design is essential to simulate full-scale printing with a lab press.

Funder

RISE Research Institutes of Sweden

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanical response of paperboard to rapid compression;Nordic Pulp & Paper Research Journal;2022-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3