Abstract
AbstractSpring of constant elasticity is a concept from theories of extension while elastic nonlinearity in compressive deformation is a general phenomenon for polymeric materials involved in offset or flexographic printing, paper board, polymer plate, and cushioning tape. This phenomenon needs therefore to be coped with by the model of printing dynamics. We hereby present an extended approach based on the Maxwell material model. In the extended approach, a compression process is subdivided into (or approximated by) sequential subprocesses. The elastic modulus may vary from one subsection to another but remains constant in each of the subprocesses. With the extended approach dynamic behaviours (compression/recovering) of paperboard can be reproduced and predicted. As a concrete example, dynamic behaviours of paper board in the print nip were simulated with satisfactory outcome. The simulation also revealed that viscoelasticity of the board is the origin of mechanical hysteresis of the stress–strain curve. Due to viscoelasticity and nonlinearity of the materials careful design is essential to simulate full-scale printing with a lab press.
Funder
RISE Research Institutes of Sweden
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献