Review on the matching conditions for the tidal problem: towards the application to more general contexts

Author:

Aranguren Eneko,Vera Raül

Abstract

AbstractThe tidal problem is used to obtain the tidal deformability (or Love number) of stars. The semi-analytical study is usually treated in perturbation theory as a first order perturbation problem over a spherically symmetric background configuration consisting of a stellar interior region matched across a boundary to a vacuum exterior region that models the tidal field. The field equations for the metric and matter perturbations at the interior and exterior regions are complemented with corresponding boundary conditions. The data of the two problems at the common boundary are related by the so called matching conditions. These conditions for the tidal problem are known in the contexts of perfect fluid stars and superfluid stars modelled by a two-fluid. Here we review the obtaining of the matching conditions for the tidal problem starting from a purely geometrical setting, and present them so that they can be readily applied to more general contexts, such as other types of matter fields, different multiple layers or phase transitions. As a guide on how to use the matching conditions, we recover the known results for perfect fluid and superfluid neutron stars.

Funder

Eusko Jaurlaritza

Agencia Estatal de Investigación

Universidad del País Vasco

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3